Robust linear discriminant analysis for multiple groups: influence and classification efficiencies

نویسندگان

  • Christophe Croux
  • Peter Filzmoser
  • Kristel Joossens
چکیده

Linear discriminant analysis for multiple groups is typically carried out using Fisher’s method. This method relies on the sample averages and covariance matrices computed from the different groups constituting the training sample. Since sample averages and covariance matrices are not robust, it is proposed to use robust estimators of location and covariance instead, yielding a robust version of Fisher’s method. In this paper expressions are derived for the influence that an observation in the training set has on the error rate of the Fisher method for multiple linear discriminant analysis. These influence functions on the error rate turn out to be unbounded for the classical rule, but bounded when using a robust approach. Using these influence functions, we compute relative classification efficiencies of the robust procedures with respect to the classical method. It is shown that, by using an appropriate robust estimator, the loss in classification efficiency at the normal model remains limited. These findings are confirmed by finite sample simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust linear discriminant analysis using S-estimators

The authors consider a robust linear discriminant function based on high breakdown location and covariance matrix estimators. They derive influence functions for the estimators of the parameters of the discriminant function and for the associated classification error. The most B-robust estimator is determined within the class of multivariate S-estimators. This estimator, which minimizes the max...

متن کامل

Multi-Group Classification Using Interval Linea rProgramming

  Among various statistical and data mining discriminant analysis proposed so far for group classification, linear programming discriminant analysis has recently attracted the researchers’ interest. This study evaluates multi-group discriminant linear programming (MDLP) for classification problems against well-known methods such as neural networks and support vector machine. MDLP is less compli...

متن کامل

Multiple Group Linear Discriminant Analysis: Robustness and Error Rate

Abstract: Discriminant analysis for multiple groups is often done using Fisher’s rule, and can be used to classify observations into different populations. In this paper, we measure the performance of classical and robust Fisher discriminant analysis using the Error Rate as a performance criterion. We were able to derive an expression for the optimal error rate in the situation of three groups....

متن کامل

Sensitivity Analysis of Banks Efficiency to the Financial Variables

Discriminant analysis is a classification method that can predict the group membership of a newly sampled observation. In discriminant analysis, classification of new observed data has an uncertainty. In this paper, the confidence degree is introduced to determine the confidence of classification of new observed data. Then, a Monte Carlo-based sensitivity analysis is applied to an assessment of...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005